Plate Boundary-Resolving Nonlinear Global Mantle Flow Simulations Using Parallel High-Order Geometric Multigrid Methods on Adaptive Meshes

Johann Rudi 1 Hari Sundar 2 Tobin Isaac 1 Georg Stadler 1 Michael Gurnis 3 Omar Ghattas 14

 1 Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, USA

²School of Computing, The University of Utah, USA

³Seismological Laboratory, California Institute of Technology, USA

 $^4\,\rm Jackson$ School of Geosciences and Department of Mechanical Engineering, The University of Texas at Austin, USA

The global mantle flow problem

A multiscale problem, globally coupled, locally high resolution

(Visualization by L. Alisic)

Main results summary

Two essential components for scalable mantle flow solvers:

I. Efficient methods/algorithms

- high-order finite elements
- adaptive meshes, resolving viscosity variations
- ► inexact Newton-Krylov method
- ► *H*⁻¹-norm for velocity comp. for Newton line search
- multigrid preconditioners for elliptic operators
- ► BFBT/LSC type pressure Schur complement preconditioner

II. Scalable parallel implementation

- matrix-free stiffness/mass application
- tensor product structure of FE shape functions
- octree algorithms for handling adaptive mesh in parallel
- high-order GMG with linear AMG as coarse solve
- AMG on sparsified matrix using trilinear FE at high-order nodes
- ▶ scalability up to 16384 cores

Main results covered in this talk

Two essential components for scalable mantle flow solvers:

I. Efficient methods/algorithms

- high-order finite elements
- adaptive meshes, resolving viscosity variations
- ► inexact Newton-Krylov method
- ► *H*⁻¹-norm for velocity comp. for Newton line search
- multigrid preconditioners for elliptic operators
- ► BFBT/LSC type pressure Schur complement preconditioner

II. Scalable parallel implementation

- matrix-free stiffness/mass application
- tensor product structure of FE shape functions
- octree algorithms for handling adaptive mesh in parallel
- high-order GMG with linear AMG as coarse solve
- AMG on sparsified matrix using trilinear FE at high-order nodes
- ▶ scalability up to 16384 cores

Design of a plate tectonics & mantle convection benchmark problem

Plate tectonics & mantle convection benchmark problem Setup and major challenges

- 1. Curved slice domain
- 2. Temperature of lithosphere derived from half-space cooling model
- 3. Viscosity depends exponentially on temperature \rightarrow contrast of $> 10^{15} \rightarrow$ viscosity bounds s.t. $\mu_{\rm max}/\mu_{\rm min} \leq 10^6$
- 4. Viscosity contrast with bounds: lithosphere $\xrightarrow{\times 10^{-4}}$ asthenosphere $\xrightarrow{\times 10^2}$ lower mantle

Plate tectonics & mantle convection benchmark problem

lithosphere $\xrightarrow{\times 10^{-4}}$ asthenosphere $\xrightarrow{\times 10^2}$ lower mantle

Plate tectonics & mantle convection benchmark problem Setup and major challenges

- 1. Curved slice domain
- 2. Temperature of lithosphere derived from half-space cooling model
- 3. Viscosity depends exponentially on temperature \rightarrow contrast of $> 10^{15} \rightarrow$ viscosity bounds s.t. $\mu_{\rm max}/\mu_{\rm min} \le 10^6$
- 4. Viscosity contrast with bounds: lithosphere $\xrightarrow{\times 10^{-4}}$ asthenosphere $\xrightarrow{\times 10^2}$ lower mantle
- 5. Decouple plates by weak zone factor at plate boundaries; gives 10^6 viscosity contrast and sharp gradients

Plate tectonics & mantle convection benchmark problem decouple plates by weak zone factor at plate boundaries

15

Plate tectonics & mantle convection benchmark problem Setup and major challenges

- 1. Curved slice domain
- 2. Temperature of lithosphere derived from half-space cooling model
- 3. Viscosity depends exponentially on temperature \rightarrow contrast of $> 10^{15} \rightarrow$ viscosity bounds s.t. $\mu_{\rm max}/\mu_{\rm min} \leq 10^6$
- 4. Viscosity contrast with bounds: lithosphere $\xrightarrow{\times 10^{-4}}$ asthenosphere $\xrightarrow{\times 10^2}$ lower mantle
- 5. Decouple plates by weak zone factor at plate boundaries; gives 10^6 viscosity contrast and sharp gradients
- 6. No outflow boundary conditions and right-hand side
- 7. Highly nonlinear rheology: strain rate dependent viscosity (power law), yielding at high stresses

Plate tectonics & mantle convection benchmark problem strain rate dependent viscosity, yielding at high stresses

The nonlinear Stokes system

Nonlinear Stokes model PDE for mantle flow with plates

Rock in the mantle moves like a viscous, incompressible fluid on time scales of millions of years. From conservation of mass and momentum, we obtain the nonlinear Stokes system for velocity and pressure:

$$\begin{cases} -\nabla \cdot \left[\mu(T, \boldsymbol{u}) (\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{\top}) \right] + \nabla p = \operatorname{Ra} (T - T_0) \boldsymbol{e}_r \\ \nabla \cdot \boldsymbol{u} = 0 \end{cases}$$

Variables:

- ightharpoonup T ... temperature
- $ightharpoonup u \dots$ velocity
- ightharpoonup p ... pressure

Parameters:

- $\blacktriangleright \mu(T, \boldsymbol{u}) \dots$ viscosity
- $ightharpoonup T_0 \dots$ background temperature
- $ightharpoonup {
 m Ra} \sim 10^6 10^9 \ldots {
 m Rayleigh \ number}$
- $ightharpoonup e_r$. . . radial direction

Rheology

Nonlinear viscosity:

 $\mathsf{viscosity} = \mathsf{upper}\;\mathsf{bound} \to \mathsf{weak}\;\mathsf{zone} \to \mathsf{yielding} \to \mathsf{lower}\;\mathsf{bound}$

$$\mu(T, \boldsymbol{u}) = \max \left(\mu_{\min}, \min \left(\frac{\tau_{\text{yield}}}{2 \dot{\varepsilon}(\boldsymbol{u})}, w \min \left(\mu_{\max}, a(T) \, \dot{\varepsilon}(\boldsymbol{u})^{\frac{1-n}{n}} \right) \right) \right)$$

Given:

- $lacktriangleright a(T) \dots$ temperature dependent viscosity factor
- $ightharpoonup w(m{x})$. . . weak zone factor
- ▶ $0 < \mu_{\min} < \mu_{\max} < \infty$... viscosity bounds
- ▶ $0 < \tau_{\rm yield}$... yielding stress
- lacktriangledown n pprox 3 . . . stress exponent

Definitions:

- $ightharpoonup
 abla_s oldsymbol{u} \coloneqq rac{1}{2} (
 abla oldsymbol{u} +
 abla oldsymbol{u}^ op),$
- $II_{\dot{\varepsilon}}(\boldsymbol{u}) \coloneqq \frac{1}{2}(\nabla_s \boldsymbol{u} : \nabla_s \boldsymbol{u}), \quad \dot{\varepsilon}(\boldsymbol{u}) \coloneqq \sqrt{II_{\dot{\varepsilon}}(\boldsymbol{u})}$

Linearization: The Newton step

Nonlinear Stokes PDE:

$$\begin{cases} -\nabla \cdot [2\,\mu(\dot{\varepsilon})\nabla_{s}\boldsymbol{u}] + \nabla p = \boldsymbol{f} \\ \nabla \cdot \boldsymbol{u} = 0 \end{cases}$$

1st order variation w.r.t. (u, p) to get Newton step (\tilde{u}, \tilde{p}) :

$$\begin{cases} -\nabla \cdot \left[2 \left(\mu(\dot{\varepsilon}) \mathbf{I} + \dot{\varepsilon} \frac{\partial \mu(\dot{\varepsilon})}{\partial \dot{\varepsilon}} \frac{\nabla_{s} \boldsymbol{u} \otimes \nabla_{s} \boldsymbol{u}}{\|\nabla_{s} \boldsymbol{u}\|_{F}^{2}} \right) \nabla_{s} \tilde{\boldsymbol{u}} \right] + \nabla \tilde{\boldsymbol{p}} = -\boldsymbol{r}_{\text{mom}} \\ \nabla \cdot \tilde{\boldsymbol{u}} = -r_{\text{mass}} \end{cases}$$

Q: Is 4th order tensor term bounded?...yes

Q: Is the viscosity continuously differentiable w.r.t. $\dot{\varepsilon}$?...no Newton update:

$$(\boldsymbol{u}_{\text{new}}, p_{\text{new}}) = (\boldsymbol{u}, p) + \alpha(\tilde{\boldsymbol{u}}, \tilde{p})$$

Q: How does nonlinearity affect line search for step length α ?

Regularizing the rheology for Newton's method

Idea: Construct continuously differentiable $\dot{\varepsilon}\mapsto au$ relationship

Regularizing the rheology for Newton's method

Idea: Construct continuously differentiable $\dot{\varepsilon} \mapsto \tau$ relationship

Create smooth transitions:

upper bound plane \leftrightarrow power law plane \leftrightarrow lower bound plane yielding plane \leftrightarrow lower bound plane

Regularizing the rheology for Newton's method

Original viscosity:

$$\mu(T, \dot{\varepsilon}) = \max\left(\mu_{\min}, \min\left(\frac{\tau_{\text{yield}}}{2\dot{\varepsilon}}, w \min\left(\mu_{\max}, a(T) \dot{\varepsilon}^{\frac{1-n}{n}}\right)\right)\right)$$

► Modify upper bound:

$$\text{find shift } d \text{ s.t.} \quad \tau_d(\dot{\varepsilon}) \coloneqq \begin{cases} 2\mu_{\max}\dot{\varepsilon}, & \mu_{\max} < \mu \\ 2a(T)(\dot{\varepsilon} - d)^{\frac{1}{n}}, & \text{otherwise} \end{cases} \quad \text{is } C^1$$

Modify lower bound:

instead of cut-off:
$$\mu \leftarrow \max(\mu_{\min}, \mu)$$
, use sum: $\mu \leftarrow \mu + \mu_{\min}$

This lower bound regularization is consistent for power law and yielding viscosity!

Regularized viscosity:

$$\mu_{\text{reg}}(T, \dot{\varepsilon}) = \min\left(\frac{\tau_{\text{yield}}}{2\dot{\varepsilon}}, w \min\left(\mu_{\text{max}}, a(T) \left(\dot{\varepsilon} - d\right)^{\frac{1}{n}} \dot{\varepsilon}^{-1}\right)\right) + \mu_{\text{min}}$$

The discrete Stokes system

Finite element discretization of the Stokes system

$$\begin{cases} -\nabla \cdot [2\,\mu\,\nabla_s \boldsymbol{u}] + \nabla p = \boldsymbol{f} & \xrightarrow{\text{discretize}} & \begin{bmatrix} \mathbf{A} & \mathbf{B}^\top \\ \mathbf{B} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \boldsymbol{0} \end{bmatrix}$$

- Hexahedral meshes with non-conforming elements;
 algebraic constraints on element faces with hanging nodes enforce continuity of the global velocity basis functions
- ► High-order finite element shape functions
- ▶ Inf-sup stable velocity-pressure pairings: $\mathbb{Q}_k \times \mathbb{P}_{k-1}^{\mathrm{disc}}$ with $2 \leq k$
- ► Locally mass conservative due to discontinuous pressure space
- ► Fast, matrix-free application of stiffness and mass matrices
- ► Hexahedral elements allow for the basis functions derivatives to be calculated efficiently using tensor products

Linear solver: Preconditioned Krylov method

Fully coupled iterative solver: GMRES with right preconditioning with an upper triangular block matrix

$$\begin{bmatrix} \mathbf{A} & \mathbf{B}^\top \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{A}} & \mathbf{B}^\top \\ \mathbf{0} & \tilde{\mathbf{S}} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{u}' \\ \mathbf{p}' \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \mathbf{0} \end{bmatrix}$$

Next, we seek:

- ▶ Approximation for viscous stress block: $\tilde{\mathbf{A}}^{-1} \approx \mathbf{A}^{-1}$
- ▶ Approximation for Schur complement: $\tilde{\mathbf{S}}^{-1} \approx \mathbf{S}^{-1} \coloneqq (\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{\top})^{-1}$

Viscous stress block & Schur complement block preconditioner for Krylov methods

Hybrid geometric-algebraic multigrid for $\hat{\mathbf{A}}^{-1}$

Multigrid hierarchy

GMG

AMG

high-

order

linear

- Finest level: adaptively refined mesh
- Repartition coarser meshes for load-balancing
- Repartition onto fewer cores for small meshes
- AMG (PETSc GAMG) is only used for small problems on small core counts
- small core counts $\frac{\text{direct solve}}{\text{High-order }L^2\text{-projection of viscosity onto coarser levels (equal to discretization order)}$
- ► AMG uses sparsified matrix with trilinear FE at high-order nodes
- ► High-order GMG smoothing & linear AMG smoothing at transition

Hybrid geometric-algebraic multigrid for $\tilde{\mathbf{A}}^{-1}$

- ► **GMG smoother:** Chebyshev accelerated Jacobi (PETSc) with matrix-free high-order stiffness apply and assembled (point-block) diagonal of high-order stiffness matrix
- ► AMG smoother: Chebyshev accelerated Jacobi (PETSc) with assembled linear matrix at high-order nodes

▶ GMG restriction & interpolation: High-order L^2 -projection; restriction and interpolation operators are adjoints of each other in L^2 sense

BFBT/LSC methods for Schur complement $\tilde{\mathbf{S}}^{-1}$

Goal: Effective and robust preconditioning of the Schur complement in Stokes systems with high viscosity variations.

Use an improved version of BFBT / Least Squares Commutator methods

$$\tilde{\mathbf{S}}^{-1} = (\mathbf{B}\mathbf{D}^{-1}\mathbf{B}^\top)^{-1}(\mathbf{B}\mathbf{D}^{-1}\mathbf{A}\mathbf{D}^{-1}\mathbf{B}^\top)(\mathbf{B}\mathbf{D}^{-1}\mathbf{B}^\top)^{-1}, \quad \mathbf{D} \coloneqq \mathrm{diag}(\mathbf{A})$$

based on [May, Moresi, 2008].

Derived from the solution of the least squares problem:

$$\min_{\mathbf{X}} \left\| \mathbf{A} \mathbf{D}^{-1} \mathbf{B}^{\top} \mathbf{e}_{j} - \mathbf{B}^{\top} \mathbf{X} \mathbf{e}_{j} \right\|_{\mathbf{D}^{-1}}^{2} \text{ for all } j$$

In practice, approximate $(\mathbf{B}\mathbf{D}^{-1}\mathbf{B}^{\top})^{-1}$ by AMG V-cycles with Chebyshev accelerated Jacobi smoother (PETSc).

"Nonlinear Global Mantle Flow Using High-Order GMG on Adaptive Meshes" by Johann Rudi

Solver robustness

Solver robustness w.r.t. weak zone factor

Vary only the weak zone factor: $w_{\rm min}=10^{-4},10^{-5},10^{-6}$

$$w_{\min} = 10^{-4}$$

Solver robustness w.r.t. weak zone factor

Solver robustness w.r.t. weak zone thickness

Vary only the weak zone thickness: 10, 5, 2 km

10 km thickness

Solver robustness w.r.t. weak zone thickness

5 km thickness

2 km thickness

"Nonlinear Global Mantle Flow Using High-Order GMG on Adaptive Meshes" by Johann Rudi

Solver h-dependence and p-dependence

Solver *h*-dependence

Dependence of the number of Krylov iterations on the mesh resolution

mesh sizes: 224788, 661980, 1565232; quadratic FE for velocity

Elliptic solve: $\mathbf{A}\mathbf{u} = \mathbf{f}$

Stokes solve

Solver *p*-dependence

Dependence of the number of Krylov iterations on the discretization order

FE orders for velocity discretization: 2, 3, 4, 5, 6; mesh fixed

Elliptic solve: $\mathbf{A}\mathbf{u} = \mathbf{f}$

Stokes solve

Parallel scalability of GMG

Computing environment

Resources provided by the Texas Advanced Computing Center (TACC)

Stampede supercomputer

- ► 16 CPU cores per node, 2 × 8 core Intel Xeon E5-2680
- ► 32GB main memory per node, 8 × 4GB DDR3-1600MHz
- ▶ 6400 nodes, 102,400 cores total
- ► InfiniBand FDR network

Compiler and libraries

- ► Compiler: Intel 14.0.1.106
- ► MPI: MVAPICH2 2.0b
- ► Linear algebra library: PETSc 3.4.3

Scalability problem: Elliptic solve on adaptive Earth mesh

- lacktriangle solve for velocity: $\mathbf{A}\mathbf{u}=\mathbf{f}$
- ightharpoonup adaptive mesh (p4est library) with up to ~ 0.5 km resolution
- quadratic FE velocity discretization
- weak zone factor 10^{-5} , thickness 20 km
- viscosity variation is as high as in physically realistic simulation

Weak scaling for $\mathbf{A}\mathbf{u}=\mathbf{f}$ on adaptive Earth mesh

#cores	#elems	vel DOF	#levels GMG, AMG	setup GMG, AMG, total	solve	total	#iter
2048	31.4e6	640.1e6	7, 4	13.2, 14.4, 27.7	2348.6	2421.6	392
4096	56.8e6	1157.7e6	7, 4	13.3, 37.2, 50.5	2585.4	2702.0	389
8192	120.5e6	2440.1e6	8, 4	18.9, 43.0, 61.9	2241.2	2377.6	334
16384	260.7e6	5374.9e6	8, 4	34.7, 98.0, 132.7	2220.3	2488.6	275

Algorithmic & implementation scalability: T/(N/P)

Implementation scalability:

T/(N/P)/K

where

- ightharpoonup T . . . setup + solve time
- ightharpoonup N ... velocity DOF
- ▶ *P* ... #cores
- ► *K* . . . #iterations

Strong scaling for Au = f on adaptive Earth mesh

Problem size: N = 640.1e6 velocity DOF

#cores	setup GMG, AMG, total	solve	total	#iter
2048	13.2, 14.4, 27.7	2348.6	2421.6	392
4096	9.9, 27.0, 36.9	1492.1	1564.7	400
8192	11.3, 41.6, 52.8	864.8	947.1	404
16384	14.9, 80.7, 95.6	621.0	746.1	402
		,		

Strong scaling of solve (efficiency rel. to 2048)

Problem size: N = 1157.7e6 velocity DOF

#cores	setup GMG, AMG, total	solve	total	#iter
4096	13.3, 37.2, 50.5	2585.4	2702.0	389
8192	12.4, 65.6, 77.9	1498.5	1621.9	386
16384	13.7, 99,4, 113.2	989.6	1137.9	389

Strong scaling of solve (efficiency rel. to 4096)

"Nonlinear Global Mantle Flow Using High-Order GMG on Adaptive Meshes" by Johann Rudi

Nonlinear solver convergence

Nonlinear convergence for slice problem

- ▶ Weak zone factor 10^{-5} , 10 km thickness
- ► Yielding at high stresses
- Adaptive mesh refinement after the first two Newton steps
- ▶ Residual measured in H^{-1} -norm for backtracking line search; important to not have overly conservative backtracking steps $\ll 1$ (requires 3 scalar constant coefficient Laplace solves)
- ► Complexity: 33M velocity & pressure DOF, 1024 processor cores, 39 min total runtime

Inexact Newton-Krylov convergence for slice problem

Reduction of H^{-1} -norm of velocity residual and Newton step length

slice_bc1_k2_L14_gmgA1_gmgBBT0_schur1_bfbt6
Newton convergence (complexity: N=3.25e+07, P=1024, T=39min, T/P/N=6.97e-08sec)

Inexact Newton-Krylov convergence for slice problem

Reduction of l^2 -norm of residual at Newton and Krylov iterations

slice_bc1_k2_L14_gmgA1_gmgBBT0_schur1_bfbt6
Newton-Krylov convergence (complexity: N=3.25e+07, P=1024, T=39min, T/P/N=6.97e-08sec)

Nonlinear convergence for Earth problem

- ► Weak zone factor 10⁻⁴, 100 km thickness
- Yielding at high stresses
- AMR after the first four Newton steps
- Residual measured in H⁻¹-norm for backtracking line search
- Complexity: 642M
 velocity & pressure DOF,
 4096 processor cores,
 473 min total runtime

Inexact Newton-Krylov convergence for Earth problem

Reduction of H^{-1} -norm of velocity residual and Newton step length

earth_bc1_k2_L14_gmgA1_gmgBBT0_schur1_bfbt3
Newton convergence (complexity: N=6.42e+08, P=4096, T=473min, T/P/N=1.08e-08sec)

Inexact Newton-Krylov convergence for Earth problem

Reduction of l^2 -norm of residual at Newton and Krylov iterations

earth_bc1_k2_L14_gmgA1_gmgBBT0_schur1_bfbt3
Newton-Krylov convergence (complexity: N=6.42e+08, P=4096, T=473min, T/P/N=1.08e-08sec)

"Nonlinear Global Mantle Flow Using High-Order GMG on Adaptive Meshes" by Johann Rudi

Thank you

Main results summary

Two essential components for scalable mantle flow solvers:

I. Efficient methods/algorithms

- high-order finite elements
- adaptive meshes, resolving viscosity variations
- ▶ inexact Newton-Krylov method
- ► *H*⁻¹-norm for velocity comp. for Newton line search
- multigrid preconditioners for elliptic operators
- ► BFBT/LSC type pressure Schur complement preconditioner

II. Scalable parallel implementation

- matrix-free stiffness/mass application
- tensor product structure of FE shape functions
- octree algorithms for handling adaptive mesh in parallel
- high-order GMG with linear AMG as coarse solve
- AMG on sparsified matrix using trilinear FE at high-order nodes
- ▶ scalability up to 16384 cores

BFBT/LSC methods for Schur complement preconditioning

BFBT method [Elman, 1999]: pseudoinverse

$$\tilde{\mathbf{S}}^{-1} = (\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^\top)^+ = (\mathbf{B}\mathbf{B}^\top)^{-1}(\mathbf{B}\mathbf{A}\mathbf{B}^\top)(\mathbf{B}\mathbf{B}^\top)^{-1}$$

Least Squares Commutators (LSC) [Elman, et al., 2006]:

Find commutator matrix X s.t. $(AB^\top - B^\top X) \approx 0$, by solving the least squares problem:

Find columns
$$\mathbf{x}_j$$
 of \mathbf{X} s.t. $\min_{\mathbf{x}_j} \left\| [\mathbf{A}\mathbf{B}^{\top}]_j - \mathbf{B}^{\top}\mathbf{x}_j \right\|_2^2$

$$\Rightarrow \ \mathbf{X} = (\mathbf{B}\mathbf{B}^{\top})^{-1}(\mathbf{B}\mathbf{A}\mathbf{B}^{\top})$$

$$(\mathbf{A}\mathbf{B}^{\top} - \mathbf{B}^{\top}\mathbf{X}) \approx \mathbf{0} \ \Rightarrow \ (\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{\top})^{-1} \approx (\mathbf{B}\mathbf{B}^{\top})^{-1}(\mathbf{B}\mathbf{A}\mathbf{B}^{\top})(\mathbf{B}\mathbf{B}^{\top})^{-1}$$

LSC gives same result for $\tilde{\mathbf{S}}^{-1}$ as pseudoinverse.

Q: Does this work for FE discretizations?...

BFBT method [Elman, 1999]: pseudoinverse

$$\tilde{\mathbf{S}}^{-1} = (\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^\top)^+ = (\mathbf{B}\mathbf{B}^\top)^{-1}(\mathbf{B}\mathbf{A}\mathbf{B}^\top)(\mathbf{B}\mathbf{B}^\top)^{-1}$$

Least Squares Commutators (LSC) [Elman, et al., 2006]:

Find commutator matrix X s.t. $(AB^\top - B^\top X) \approx 0$, by solving the least squares problem:

Find columns
$$\mathbf{x}_j$$
 of \mathbf{X} s.t. $\min_{\mathbf{x}_j} \left\| [\mathbf{A}\mathbf{B}^{\top}]_j - \mathbf{B}^{\top}\mathbf{x}_j \right\|_2^2$

$$\Rightarrow \mathbf{X} = (\mathbf{B}\mathbf{B}^{\top})^{-1}(\mathbf{B}\mathbf{A}\mathbf{B}^{\top})$$

$$(\mathbf{A}\mathbf{B}^{\top} - \mathbf{B}^{\top}\mathbf{X}) \approx \mathbf{0} \ \Rightarrow \ (\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{\top})^{-1} \approx (\mathbf{B}\mathbf{B}^{\top})^{-1}(\mathbf{B}\mathbf{A}\mathbf{B}^{\top})(\mathbf{B}\mathbf{B}^{\top})^{-1}$$

LSC gives same result for $\tilde{\mathbf{S}}^{-1}$ as pseudoinverse.

Q: Does this work for FE discretizations?...no

Diagonally scaled BFBT method [Elman, et al., 2006]:

Find columns
$$\mathbf{x}_j$$
 of \mathbf{X} s.t. $\min_{\mathbf{x}_j} \left\| \mathbf{M}_1^{-1/2} [\mathbf{A} \mathbf{M}_2^{-1} \mathbf{B}^{\top}]_j - \mathbf{M}_1^{-1/2} \mathbf{B}^{\top} \mathbf{x}_j \right\|_2^2$

$$\Rightarrow \mathbf{X} = (\mathbf{B}\mathbf{M}_1^{-1}\mathbf{B}^\top)^{-1}(\mathbf{B}\mathbf{M}_1^{-1}\mathbf{A}\mathbf{M}_2^{-1}\mathbf{B}^\top)$$
$$\Rightarrow \tilde{\mathbf{S}}^{-1} = (\mathbf{B}\mathbf{M}_1^{-1}\mathbf{B}^\top)^{-1}(\mathbf{B}\mathbf{M}_1^{-1}\mathbf{A}\mathbf{M}_2^{-1}\mathbf{B}^\top)(\mathbf{B}\mathbf{M}_2^{-1}\mathbf{B}^\top)^{-1}$$

Proposed scaling: For FE, use "diagonalized" velocity mass matrix,

diagonal:
$$\mathbf{M}_1 = \mathbf{M}_2 = \mathrm{diag}(\mathbf{M}_{m{u}})$$
 or lumped: $\mathbf{M}_1 = \mathbf{M}_2 = \tilde{\mathbf{M}}_{m{u}}$

Since $BM_1^{-1}B^{\top}$ can be understood as a Laplace operator for the pressure, approximate $(BM_1^{-1}B^{\top})^{-1}$ by a multigrid V-cycle.

Q: Is mass scaled BFBT effective for high viscosity variations?...

Diagonally scaled BFBT method [Elman, et al., 2006]:

Find columns
$$\mathbf{x}_j$$
 of \mathbf{X} s.t. $\min_{\mathbf{x}_j} \left\| \mathbf{M}_1^{-1/2} [\mathbf{A} \mathbf{M}_2^{-1} \mathbf{B}^{\top}]_j - \mathbf{M}_1^{-1/2} \mathbf{B}^{\top} \mathbf{x}_j \right\|_2^2$

$$\Rightarrow \mathbf{X} = (\mathbf{B}\mathbf{M}_1^{-1}\mathbf{B}^\top)^{-1}(\mathbf{B}\mathbf{M}_1^{-1}\mathbf{A}\mathbf{M}_2^{-1}\mathbf{B}^\top)$$
$$\Rightarrow \tilde{\mathbf{S}}^{-1} = (\mathbf{B}\mathbf{M}_1^{-1}\mathbf{B}^\top)^{-1}(\mathbf{B}\mathbf{M}_1^{-1}\mathbf{A}\mathbf{M}_2^{-1}\mathbf{B}^\top)(\mathbf{B}\mathbf{M}_2^{-1}\mathbf{B}^\top)^{-1}$$

Proposed scaling: For FE, use "diagonalized" velocity mass matrix,

diagonal:
$$\mathbf{M}_1 = \mathbf{M}_2 = \mathrm{diag}(\mathbf{M}_{m{u}})$$
 or lumped: $\mathbf{M}_1 = \mathbf{M}_2 = \tilde{\mathbf{M}}_{m{u}}$

Since $BM_1^{-1}B^{\top}$ can be understood as a Laplace operator for the pressure, approximate $(BM_1^{-1}B^{\top})^{-1}$ by a multigrid V-cycle.

Q: Is mass scaled BFBT effective for high viscosity variations?...no

BFBT for scaled Stokes systems that arise in geodynamics [May, Moresi, 2008]:

$$\begin{bmatrix} \mathbf{D}_{\boldsymbol{u}}^{-1/2} & \mathbf{0} \\ \mathbf{0} & \mathbf{D}_p^{-1/2} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{B}^\top \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{D}_{\boldsymbol{u}}^{-1/2} & \mathbf{0} \\ \mathbf{0} & \mathbf{D}_p^{-1/2} \end{bmatrix}$$

Then the standard BFBT method yields its scaled version,

$$\Rightarrow \ \tilde{\mathbf{S}}^{-1} = (\mathbf{B}\mathbf{D}_u^{-1}\mathbf{B}^\top)^{-1}(\mathbf{B}\mathbf{D}_u^{-1}\mathbf{A}\mathbf{D}_u^{-1}\mathbf{B}^\top)(\mathbf{B}\mathbf{D}_u^{-1}\mathbf{B}^\top)^{-1}$$

Proposed scaling: heuristic, motivated by scaling of dimensional systems

$$[\mathbf{D}_{u}]_{i,i} = \max_{j} |[\mathbf{A}]_{i,j}|$$

Q: Is BFBT with this scaling effective for high viscosity variations?...

BFBT for scaled Stokes systems that arise in geodynamics [May, Moresi, 2008]:

$$\begin{bmatrix} \mathbf{D}_{\boldsymbol{u}}^{-1/2} & \mathbf{0} \\ \mathbf{0} & \mathbf{D}_p^{-1/2} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{B}^\top \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{D}_{\boldsymbol{u}}^{-1/2} & \mathbf{0} \\ \mathbf{0} & \mathbf{D}_p^{-1/2} \end{bmatrix}$$

Then the standard BFBT method yields its scaled version,

$$\Rightarrow \ \tilde{\mathbf{S}}^{-1} = (\mathbf{B}\mathbf{D}_u^{-1}\mathbf{B}^\top)^{-1}(\mathbf{B}\mathbf{D}_u^{-1}\mathbf{A}\mathbf{D}_u^{-1}\mathbf{B}^\top)(\mathbf{B}\mathbf{D}_u^{-1}\mathbf{B}^\top)^{-1}$$

Proposed scaling: heuristic, motivated by scaling of dimensional systems

$$[\mathbf{D}_{u}]_{i,i} = \max_{j} |[\mathbf{A}]_{i,j}|$$

Q: Is BFBT with this scaling effective for high viscosity variations?... yes

Let C be symm. pos. def. and let D be arbitrary,

Find X s.t.
$$\min_{\mathbf{X}} \left\| \mathbf{A} \mathbf{D}^{-1} \mathbf{B}^{\top} \mathbf{e}_{j} - \mathbf{B}^{\top} \mathbf{X} \mathbf{e}_{j} \right\|_{\mathbf{C}^{-1}}^{2}$$
 for all j

$$\Rightarrow \mathbf{X} = (\mathbf{B}\mathbf{C}^{-1}\mathbf{B}^{\top})^{-1}(\mathbf{B}\mathbf{C}^{-1}\mathbf{A}\mathbf{D}^{-1}\mathbf{B}^{\top})$$

And we have a C^{-1} -orthogonal projection, i.e., the residual satisfies

$$\left\langle \mathbf{B}^{\top}\mathbf{e}_{i},(\mathbf{A}\mathbf{D}^{-1}\mathbf{B}^{\top}-\mathbf{B}^{\top}\mathbf{X})\mathbf{e}_{j}\right\rangle _{\mathbf{C}^{-1}}=\mathbf{0}\quad\text{for all }i,j,$$

therefore

$$\left(\mathbf{A}\mathbf{D}^{-1}\mathbf{B}^{\top} - \mathbf{B}^{\top}\mathbf{X}\right)\mathbf{e}_{j} \perp_{\mathbf{C}^{-1}} \operatorname{Ran}(\mathbf{B}^{\top})$$
 for all j

Goal: Effective and robust preconditioning of the Schur complement in Stokes systems with high viscosity variations

Recall: Condition for optimal preconditioning $(\mathbf{B}\tilde{\mathbf{A}}^{-1}\mathbf{B}^{\top})\tilde{\mathbf{S}}^{-1}=\mathbf{I}$. By choosing $\mathbf{C}=\tilde{\mathbf{A}}$, we obtain equivalence between orthogonality and the condition for optimal preconditioning:

$$\left\langle \mathbf{B}^{\top} \mathbf{e}_{i}, (\mathbf{A} \mathbf{D}^{-1} \mathbf{B}^{\top} - \mathbf{B}^{\top} \mathbf{X}) \mathbf{e}_{j} \right\rangle_{\tilde{\mathbf{A}}^{-1}} = \mathbf{0} \quad \forall i, j \quad \Leftrightarrow \quad \tilde{\mathbf{S}} = \mathbf{B} \tilde{\mathbf{A}}^{-1} \mathbf{B}^{\top}$$

Goal: Effective and robust preconditioning of the Schur complement in Stokes systems with high viscosity variations

Recall: Condition for optimal preconditioning $(\mathbf{B}\tilde{\mathbf{A}}^{-1}\mathbf{B}^{\top})\tilde{\mathbf{S}}^{-1}=\mathbf{I}$. By choosing $\mathbf{C}=\tilde{\mathbf{A}}$, we obtain equivalence between orthogonality and the condition for optimal preconditioning:

$$\left\langle \mathbf{B}^{\top} \mathbf{e}_{i}, (\mathbf{A} \mathbf{D}^{-1} \mathbf{B}^{\top} - \mathbf{B}^{\top} \mathbf{X}) \mathbf{e}_{j} \right\rangle_{\tilde{\mathbf{A}}^{-1}} = \mathbf{0} \quad \forall i, j \quad \Leftrightarrow \quad \tilde{\mathbf{S}} = \mathbf{B} \tilde{\mathbf{A}}^{-1} \mathbf{B}^{\top}$$

Choices of \mathbf{C},\mathbf{D} that are computationally feasible are limited.

Our choice: $C = D \coloneqq \operatorname{diag}(A)$, thus

$$\tilde{\mathbf{S}}^{-1} = (\mathbf{B}\mathbf{D}^{-1}\mathbf{B}^\top)^{-1}(\mathbf{B}\mathbf{D}^{-1}\mathbf{A}\mathbf{D}^{-1}\mathbf{B}^\top)(\mathbf{B}\mathbf{D}^{-1}\mathbf{B}^\top)^{-1}$$

Approximate $(\mathbf{B}\mathbf{D}^{-1}\mathbf{B}^{\top})^{-1}$ with AMG V-cycles (PETSc GAMG).

Q: Is this $\tilde{\mathbf{S}}^{-1}$ robust at high viscosity variations?...

Goal: Effective and robust preconditioning of the Schur complement in Stokes systems with high viscosity variations

Recall: Condition for optimal preconditioning $(\mathbf{B}\tilde{\mathbf{A}}^{-1}\mathbf{B}^{\top})\tilde{\mathbf{S}}^{-1}=\mathbf{I}$. By choosing $\mathbf{C}=\tilde{\mathbf{A}}$, we obtain equivalence between orthogonality and the condition for optimal preconditioning:

$$\left\langle \mathbf{B}^{\top} \mathbf{e}_{i}, (\mathbf{A} \mathbf{D}^{-1} \mathbf{B}^{\top} - \mathbf{B}^{\top} \mathbf{X}) \mathbf{e}_{j} \right\rangle_{\tilde{\mathbf{A}}^{-1}} = \mathbf{0} \quad \forall i, j \quad \Leftrightarrow \quad \tilde{\mathbf{S}} = \mathbf{B} \tilde{\mathbf{A}}^{-1} \mathbf{B}^{\top}$$

Choices of \mathbf{C},\mathbf{D} that are computationally feasible are limited.

Our choice: $C = D \coloneqq \operatorname{diag}(A)$, thus

$$\tilde{\mathbf{S}}^{-1} = (\mathbf{B}\mathbf{D}^{-1}\mathbf{B}^\top)^{-1}(\mathbf{B}\mathbf{D}^{-1}\mathbf{A}\mathbf{D}^{-1}\mathbf{B}^\top)(\mathbf{B}\mathbf{D}^{-1}\mathbf{B}^\top)^{-1}$$

Approximate $(\mathbf{B}\mathbf{D}^{-1}\mathbf{B}^{\top})^{-1}$ with AMG V-cycles (PETSc GAMG).

 $\mathbf{Q}\text{:}$ Is this $\tilde{\mathbf{S}}^{-1}$ robust at high viscosity variations?...see results